Fuzzy model-based body-wide anatomy recognition in medical images
نویسندگان
چکیده
To make Quantitative Radiology a reality in routine radiological practice, computerized automatic anatomy recognition (AAR) becomes essential. Previously, we presented a fuzzy object modeling strategy for AAR. This paper presents several advances in this project including streamlined definition of open-ended anatomic objects, extension to multiple imaging modalities, and demonstration of the same AAR approach on multiple body regions. The AAR approach consists of the following steps: (a) Collecting image data for each population group G and body region B. (b) Delineating in these images the objects in B to be modeled. (c) Building Fuzzy Object Models (FOMs) for B. (d) Recognizing individual objects in a given image of B by using the models. (e) Delineating the recognized objects. (f) Implementing the computationally intensive steps in a graphics processing unit (GPU). Image data are collected for B and G from our existing patient image database. Fuzzy models for the individual objects are built and assembled into a model of B as per a chosen hierarchy of the objects in B. A global recognition strategy is used to determine the pose of the objects within a given image I following the hierarchy. The recognized pose is utilized to delineate the objects, also hierarchically. Based on three body regions tested utilizing both computed tomography (CT) and magnetic resonance (MR) imagery, recognition accuracy for non-sparse objects has been found to be generally sufficient ( 3 to 11 mm or 2-3 voxels) to yield delineation false positive (FP) and true positive (TP) values of < 5% and ≥ 90%, respectively. The sparse objects require further work to improve their recognition accuracy.
منابع مشابه
Automatic anatomy recognition in whole-body PET/CT images.
PURPOSE Whole-body positron emission tomography/computed tomography (PET/CT) has become a standard method of imaging patients with various disease conditions, especially cancer. Body-wide accurate quantification of disease burden in PET/CT images is important for characterizing lesions, staging disease, prognosticating patient outcome, planning treatment, and evaluating disease response to ther...
متن کاملAutomatic thoracic anatomy segmentation on CT images using hierarchical fuzzy models and registration
PURPOSE In an attempt to overcome several hurdles that exist in organ segmentation approaches, the authors previously described a general automatic anatomy recognition (AAR) methodology for segmenting all major organs in multiple body regions body-wide [J. K. Udupa et al., "Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images," Med. Image Anal. 18(5),...
متن کاملAutomatic anatomy recognition in post-tonsillectomy MR images of obese children with OSAS
Automatic Anatomy Recognition (AAR) is a recently developed approach for the automatic whole body wide organ segmentation. We previously tested that methodology on image cases with some pathology where the organs were not distorted significantly. In this paper, we present an advancement of AAR to handle organs which may have been modified or resected by surgical intervention. We focus on MRI of...
متن کاملFuzzy model based object delineation via energy minimization
ABSTRACT We study the problem of automatic delineation of an anatomic object in an image, where the object is solely identified by its anatomic prior. We form such priors in the form of fuzzy models to facilitate the segmentation of images acquired via di↵erent imaging modalities (like CT, MRI, or PET), in which the recorded image properties are usually di↵erent. Our main interest is in delinea...
متن کاملAutomatic anatomy recognition on CT images with pathology
Body-wide anatomy recognition on CT images with pathology becomes crucial for quantifying body-wide disease burden. This, however, is a challenging problem because various diseases result in various abnormalities of objects such as shape and intensity patterns. We previously developed an automatic anatomy recognition (AAR) system [1] whose applicability was demonstrated on near normal diagnosti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013